Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system
نویسندگان
چکیده
In this paper, we generalize the idea in our previous work for the Vlasov-Ampère (VA) system [8] and develop energy-conserving discontinuous Galerkin (DG) methods for the Vlasov-Maxwell (VM) system. The VM system is a fundamental model in the simulation of collisionless magnetized plasmas. Compared to [8], additional care needs to be taken for both the temporal and spatial discretizations to achieve similar type of conservation when the magnetic field is no longer negligible. Our proposed schemes conserve the total particle number and the total energy at the same time, and therefore can obtain accurate, yet physically relevant solutions. The main components of our methods include second order and above, explicit or implicit energy-conserving temporal discretizations, and DG methods for Vlasov and Maxwell’s equations with carefully chosen numerical fluxes. Benchmark numerical tests such as the streaming Weibel instability are provided to validate the accuracy and conservation of the schemes.
منابع مشابه
Numerical study of the two-species Vlasov-Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability
In this paper, we propose energy-conserving Eulerian solvers for the two-species Vlasov-Ampère (VA) system and apply the methods to simulate current-driven ionacoustic instability. The algorithm is generalized from our previous work for the singlespecies VA system [9] and Vlasov-Maxwell (VM) system [8]. The main feature of the schemes is their ability to preserve the total particle number and t...
متن کاملDiscontinuous Galerkin Methods for the Vlasov-Maxwell Equations
Discontinuous Galerkin methods are developed for solving the Vlasov–Maxwell system, methods that are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov–Maxwell system. The proposed scheme employs discontinuous Galerki...
متن کاملDiscontinuous Galerkin Methods for Vlasov-maxwell Equations
In this paper, we propose to use discontinuous Galerkin methods to solve the Vlasov-Maxwell system. Those methods are chosen because they can be designed systematically as accurate as one wants, meanwhile with provable conservation of mass and possibly also of the total energy. Such property in general is hard to achieve within other numerical method frameworks to simulate the Vlasov-Maxwell sy...
متن کاملDiscontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System
The relativistic Vlasov-Maxwell (RVM) system is a kinetic model that describes the dynamics of plasma when the charged particles move in the relativistic regime and their collisions are not important. In this paper, we formulate and investigate discontinuous Galerkin (DG) methods to solve the RVM system. When standard piecewise polynomial functions are used to define trial and test spaces, the ...
متن کاملEnergy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system
We propose a new, energy conserving, spectral element, discontinuous Galerkin method for the approximation of the Vlasov–Poisson system in arbitrary dimension, using Cartesian grids. The method is derived from the one proposed in [ACS12], with two modifications: energy conservation is obtained by a suitable projection operator acting on the solution of the Poisson problem, rather than by solvin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 279 شماره
صفحات -
تاریخ انتشار 2014